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Abstract 

Value added models (VAMs) have been used in education to 
measure the effectiveness of schools based on student test 
scores. Much research has questioned the use of these proce-
dures. Here it is shown that this measure is systematically 
biased against schools that serve students from historically 
poor performing groups in some situations. Other situations 
are shown where some statistical procedures are biased 
against schools that serve students from historically high per-
forming groups. The main conclusion is that before any sta-
tistical procedures are used for high stakes decisions their 
accuracy should be examined based on how the data are like-
ly to arise. 
Keywords: fairness; effectiveness; education 

 
Modern society measures many things (Muller, 2018). Many differ-

ent societies use student test scores in some way in their accountability 
systems (see papers in Holloway et al., 2017). Sometimes the statistical 
procedures used to analyse data favour particular groups of people; what 
is called fairness within education (American Educational Research As-
sociation et al., 2014). Often these favour the group who is in power and 
who is implementing the measurement (Walter & Anderson, 2013). In 
education, many jurisdictions estimate the effectiveness of schools (and 
sometimes teachers) using student test scores. These are often presented 
as "league tables" in a manner similar to sports team standings or by as-
signing A to F grades to the schools. These estimates can have serious 
consequences including school closures. 
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Using test scores to estimate school effectiveness has been debated 
in the US and the UK by both statisticians and education policy re-
searchers (e.g., Amrein-Beardsley, 2014; Goldstein & Spiegelhalter, 
1996, and many more). For a review focused on history of accountability 
measures in education focused on the UK see Leckie & Goldstein (2017). 
The focus here is on a particular model often called the value added 
model, abbreviated 

This paper is based on Wright (in press), which examined just the line-
ar Ancova and gain score models (but goes into more depth on Lord's 
[1967] paradox). If readers do not have access to that paper and wish to 
read it, please email Dr. Wright.VAM (for review, see Castellano & Ho, 
2013), and variant of it. A basic version of this is a multilevel linear An-
cova where one of the covariates is the previous scores. The students are 
nested within the school and the conditional mode for the intercept for 
the school is used to estimate the effectiveness of the school (for tech-
nical details of these models, see Bates et al., 2015; Goldstein, 2014). In 
simplest terms (and supposing ideal circumstances), suppose all stu-
dents take an assessment prior to entering the school (maybe the year 
before at their previous school) and then one at the end of their school-
ing. Let the students be index by the subscript i and the school that they 
are in by the subscript j. The model (#5 in Aitkin & Longford, 1986, p. 
12) is: 

postij = β0 + β1prioriij + uj + eij (1) 

where ui and eij are assumed drawn from normal distributions. The con-
ditional modes (also called conditional means, empirical Bayes estimates, 
shrunken estimates, and school residuals) estimate the school intercept 
deviance from the overall β0. 

There are variants of this, for example estimating individual β0 effects in 
the model for each school (often called the fixed-effect approach), using 
longitudinal models, adding further covariates, not using any covariates, 
allowing a more flexible but still monotonic curve between priorij and 
postij , fixing β1 1, etc. The focus here is on eqn. 1, not using any covari-
ates (the status model, equivalent to letting β1 = 0 in eqn. 1), and fixing 
β1 to 1 (the gain score model). Simulations show that these approaches 
can produce estimates of effectiveness that have small and even negative 
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correlations with true effectiveness (e.g., Wright, 2017, 2018). The focus 
here will be on fairness: whether these approaches favour one group over 
another. 

It is worth mentioning that demographics are sometimes included in 
these models. Sometimes politicians argue against their inclusion be-
cause there are regulations against doing so for student data, when es-
timating values for students. This is not relevant here since the student 
test scores are being used for a different purpose. The group variable is 
not used here because if it were any group differences would not be ap-
parent. The models would all show no differential effects. 

Fairness of Value Added Models 

There are many issues using VAMs to estimate school effectiveness, 
both the statistical procedures and the consequences of these measure-
ments. Examples of negative consequences in the US include: 

• Teachers and school administrators changing student responses to 
increase their schools' scores (Blinder, 2015). 

• Parents being concerned that teachers teach for the particulars of 
the test and not for the students' learning of the subject. 

• All stake holders questioning whether the weights given to the differ-
ent facets within the algorithm are appropriate. 

The focus here is on whether the statistical procedures measure what the 
policy makers want them measure (and what they have been told that 
they measure). Do they measure, as the name suggests, the value a 
school adds to the students' performance? The short answer is often no. 
It will not surprise readers of Radical Statistics that a brief bumper stick-
er label like "value added model" over-simplifies the procedure to the 
point of being misleading. It also won't surprise readers that the method 
used to explain these procedures is obfuscation, coupled with a few sim-
ple but errant tidbits like "the procedure levels the playing field for all 
schools" or "using covariates controls for everything (or anything)," that 
might convince the uncritical. In a brilliant essay, Braun (2013) de-
scribes how some people succumb to this propaganda and believe this 
procedure magically creates accurate measurements. Goldstein (1991, p. 
91) brings these beliefs down to the earthly realm: it is "most certainly 
not a magic wand that will allow us automatically to make definitive pro-
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nouncements about differences between individual schools." When peel-
ing away many layers of obfuscation (this is a high frequency word in 
some government departments), the algorithms remain baffling. When 
scientists and statisticians at Los Alamos National Laboratory tried to 
understand the school grading system in New Mexico, they concluded 
that the procedures remained unclear (Nott, 2013). 

Fairness, or bias, refers to a procedure tending to produce higher 
scores for one group than for another even when their true scores are the 
same. The focus is on whether the basic model in eqn. 1, and some other 
models that are often considered, are biased when estimating effective-
ness for schools that serve different proportions of students from histori-
cally poor performing groups. In the US, States report achievement gaps 
among groups of students and generally find some groups (e.g., some 
ethnicities and those from lower socio-economic groups) tend to perform 
worse. One of the reasons given for this is that statistical methods like 
VAMs estimate that these schools (and their teachers) are less effective 
educators than other schools. While these schools may not be as good 
(and there is some evidence for this using more valid measures), the 
main point of this paper is to show that the basic value added model is 
biased against schools that tend to serve historically low performing 
groups of students. This is shown using simulation, but for discussion of 
the mathematics for the non-multilevel version see Holland & Rubin 
(1983). Before presenting the simulation, there is a brief discussion of 
two data models in the simulation. Next, there is discussion of Lord's 
paradox (Lord, 1967, 1969) and statistical models usually considered 
when discussing this paradox. The focus in this paper is on simple data 
and simple statistical models because this helps in identify the issues. 
Problems like missing data, students transferring between schools, etc. 
will not be considered. 

 

Two Data Models 

It is useful both to consider different ways for how your data may 
have arisen and to create graphs to show these (for discussion of using 
graphs to identify causes in scientific contexts, see Pearl, 2009; Pearl et 
al., 2016). Figure 1 shows two ways in which the data might arise. 
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These models are simple; real data will tend to be messier, but these 
will illustrate when biases can occur. These models have five variables 
each: groups (groups of students, for example high and low socio-
economic status); schools; prior (before entering the school, it is more 
complex if this measurement is while at the school); post; and a latent 
variable ability for the ability on academic tests. 

Panel A of Figure 1 shows that some groups tend to go to certain schools 
(because, for example, income is not evenly distributed among school 
districts and students usually go to school close to where they live), that 
groups vary in ability, and that ability influences.  In panel B prior does 
influence schools. The curved path between group and ability denotes a 
correlation (the achievement gap) without reference to any causal direc-
tion. prior scores. schools and ability then influence the post scores. The 
critical edge in the graph is the direct path from schools→post. This cor-
responds to true school effectiveness in this model. More variables and 
connections between all of these variables could be added, but the simple 
data models used here allow focus on the effects related to whether the 
prior scores affect school allocation.  

Figure 1. Two models of how the data may arise.  

A. prior not causal    B. prior causal 
for school allocation for school allocation 

 

 

 

 

         post 
 

 

In Panel A prior does not influence schools. In Panel B of Figure 1 prior 
influences which school a student attends. This could be if prior is 
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used for an entrance exam.  As with the Panel A, schools and prior in-
fluence post, and it is the direct effect from schools to post that the sta-
tistical models attempt to estimate for school effectiveness. While prior 
does not influence schools for many public elementary and high school 
systems, it is more common for universities where measures (e.g., high 
school GPA, ACT or SAT scores, 'A' levels) are often used for admis-
sions and are often used as covariates predicting outcomes like uni-
versity GPA and graduation. In practice, some situations will be a mix-
ture of these data models. 

Lord's Paradox 

Lord (1967) described a situation where two statisticians offer differ-
ent "solutions" for the same set of data and come to different conclu-
sions. A large university is interested in the effects of university dining on 
the health of its students, and if there are any differences in these effects 
by gender. The university measures weight in September and June. The 
first statistician shows that the females weighed about the same in Sep-
tember and June, and so did the males, so not only was their no overall 
gain for either group, there was no gender difference in the gain. This is 
often called the gain score approach. The second statistician ran an An-
cova (let gender = 0 for males and 1 for females): Junei = β0+ β1genderi + 
β2Septemberi + ei, and found β1< 0 showing that conditioning on Septem-
ber weights, males had higher expected June weights. Many researchers, 
with before and after scores, wishing to examine the differential effect of 
some manipulation on two groups would be choosing between these two 
methods. Given that either of these may seem plausible, but that they 
lead to difference conclusions, led Lord to labeling this a paradox. 

Since Lord described this paradox several papers have described 
when one procedure would be preferred over the other (e.g., Hand, 1994; 
Holland & Rubin, 1983; Pearl, 2016; Wainer, 1991; Wright, 2006). The 
focus here is on whether the covariate influences group allocation. With-
in the Lord's paradox context, if the covariate (September weight in his 
example, prior score in the example here) influences group allocation 
(gender in his example, school here), then the Ancova can yield unbiased 
results for the difference in the causal effect. If it does not, then the gain 
score approach may yield unbiased results, though some other assump-
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tions are also necessary (like the two scores are on the same scale). The 
gain score model for the school effectiveness example can be written as: 

postij = β0 + 1.prioriij + uj + eij (1) 

Because this equation appears so similar to eqn. 1, just constraining β1 
to be equal 1, it can surprise people that the two procedures often pro-
duces different results. If post and prior are measured on the same scale 
and each with measurement error, β1 will tend to be estimated as less 
than 1 (this is regression towards the mean). If there are no differences 
for the gain scores, it will mean that the predicted value from the Ancova 
approach will be higher for the group with the higher initial mean. 

In addition to the gain score model, the status model will be exam-
ined. Like the sports league tables, it just using the final outcomes for 
accountability. Some education accountability systems use measures 
like proportion reaching proficient or percentage graduating without tak-
ing into account any prior information. It is widely recognized that this 
there are problems using this approach to assess the causal impact of 
the schools. To make this as similar to eqns. 1 and 2, this model will be 
that same as eqn. 1 just fixing β 1 at 0. 

postij = β0 + uj + eij (3) 

This is a simple variance component model. 

Estimating Effectiveness in Education 

Many schools are evaluated based in part on models like eqn. 1 that 
use students' scores on standardized tests. The gain score and status 
models are presented for comparison. More complex models exist, but at 
their core is using previous scores (and sometimes other variables) to 
predict later scores, finding how much above or below the students' 
scores are from their predicted scores, and then aggregating these differ-
ences by school (see Castellano & Ho, 2015, for issues regarding different 
aggregation methods within the context of educational effectiveness). 

Simulation Methods 

Simulation is a useful method to test how the properties of different 
statistical procedures vary by changing how the data are constructed. 
For most simulations the true effects are known so it is relatively easy to 
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assess the accuracy of estimates. Further, the simulations can be re-
peated as many times the researcher wants in order to achieve the de-
sired degree of precision. 

Only two conditions will be used here, corresponding to the two data 
models in Figure 1. Let there be 10,000 students divided among 100 
schools. For both of these there will be no difference in the effect of 
schools by which group of students they tend to serve. This makes it 
easy to show if there is a bias (other data models were used in additional 
simulations, but these show the main finding). The groups will be called 
high and low, for historically high and low performing groups. 

For each replication, the sample is divided into two approximately 
equally sized groups (e.g., these might be those above and below the me-
dian on household income, or different ethnicities). 

StudGri ~ Bernoulli(n = 10, 000, p = .5) 

There is a latent variable, in the R code in the Appendix called achieve, 
for individual differences among students that influence test scores. The 
latent variable for both groups is normally distributed, but the one for 
the higher performing group is 0.2б higher (Cohen's small effect). 

achievei ~ Normal(n = 10, 000, µ = -2 + 4 (StudGr), б  = 20) 

The prior scores are based on this variable and normally distributed ran-
dom error. Within each group, achieve and the random error have the 
same standard deviation (б  = 20). 

priori ~ Normal(n = 10, 000, µ = achieve, б - = 20) 

Half the schools are labelled high (1-50) and half labelled low (51-100) for 
which types of students they tend to serve. The subscript j will be used 
for schools. 

For the Panel A (prior → school) students from the historically high 
performing group have an 80% probability of being assigned to a high 
school (StSchGr = 1) and students from the historically low performing 
group have an 80% probability of being assigned to a low school (StSchGr 
= 0). The prior test score plays no role in this allocation. 

StSchGri Bernoulli(n = 10, 000, 0.8(group) + 0.2(1 — group)) 
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For Panel B (prior → school), students who score above the median on 
prior have an 80% probability of being assigned to a high school and 
those who score below the median have an 80% probability of being as-
signed to a low school. Let abi = 1 if prior > median(prior) and 0 otherwise, 
then 

StSchGr ti Bernoulli(n = 10, 000, 0.8(abi) + 0.2(1 — abi)) 

A normally distributed variable for school effect was created: 

SchEffectj ~ Normal(n = 100, µ = 0, б = 5) 

Importantly, this variable does not differ systematically by the make-up 
of the school (or anything else). Therefore it is known that, on average, an 
unbiased procedure should find no differential effect for schools that 
tend to serve historically high performing groups of students than those 
that tend to serve historically low performing groups of students. The 
post scores are based on achieve, the school effect, and random error (б = 
20). 

postij ~ Normal(n = 10, 000, µ = achieveij + SchEffectj, б = 20) 

These data are created to adhere to some common statistical assump-
tions so that lack of fit cannot be attributed to, for example, skewness of 
effectiveness scores. There were 2,000 replications for each condition. 

The statistical procedures use functions from the R package lme4 
(Bates et al., 2015). The lmer function estimates the multilevel model 
and the ranef function estimates the conditional modes (the deviation 
from the etimated 𝛽𝛽0). The three models are those in eqn. 1-3. The rele-
vant code is in the Appendix. 

Simulation Results 

Table 1 shows the asymptotic 95% confidence intervals and means 
for the 2,000 replications for the data models for Panel A and Panel B, 
for models of eqns. 1-3. It is easiest to start with the status model. For 
both data situations, the effectiveness of schools that serve predomi-
nantly students from historical low performing groups is underestimat-
ed and the opposite for the other schools. Some people argue that like 
how a football team that wins all of its matches is considered good, a 
school that gets good results is doing well. The problem with this argu-
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ment is that these measures are meant to tap the causal effect of the 
schools on the students, not the students' achievements (yes, the two 
should be related, but they are not the same). As shown here, they do 
not do this and they are systematically biased in both situations tested 
here (and in most reasonable situations that could be considered). The 
reminder of the results and discussion will focus on the other two sta-
tistical procedures. 

The result for the VAM for Panel A is that it estimates that the 
schools that tend to serve groups of historically high performing stu-
dents are better than those that tend to serve groups of historically low 
performing students. This despite that we know there is no difference. 
This result is important because Panel A is a better approximate for 
most K-12 (or primary and secondary schools) than Panel B and the 
VAM (or other types of Ancova) is a common method. The gain score 
model does not show this bias. A different result emerges if the data 
arise in the manner depicted in Panel B. Now the VAM produces unbi-
ased results for the difference between the groups of schools, but the 
gain score method produces a large difference in favor of the schools 
that tend to serve low performing groups of students. 

Summary 

The statistical reasons for these effects are simple and based on Galton's 
(1886) regression towards the mean (Wright, in press). For Panel A, the 
two groups of students each regress towards the mean of their own 
group. Wainer & Brown (2007) describe this as Kelley's paradox. They 
call it a paradox because of one application of it. They showed that if you 
matched students on standardized test scores (in the US, ACT and SAT 
are the main examples) and then compared university output between 
students from groups that differ on these scores, those students from the 
low performing groups tended to do worse than their matched counter-
parts from the high performing groups. The reason is the initial scores 
are a combination of true score and error, and if you are scoring higher 
than your classmates it is likely that both of these components are posi-
tive. When you are retested, if the error is random, it is likely that it will 
not be as high. How this result is used in education is controversial, but 
the statistical explanation is straight-forward. Efron & Morris (1977) use 



Issue 124

22 
 

a sports example to show this shrinkage towards the group mean, which 
is a less controversial context. 

Table 1 

The means and upper and lower bounds for the 95% confidence in-
tervals for the two data models, for the three statistical models, 
and for schools that tend to serve historical high and low perform-
ing groups of students. All the true effects (known, because this is a 
simulation) are zero. 

 

  Panel A Panel B 

Status Mean -0.92 0.91 6.15 6.19 

 95% CI (-0.95, -0.89) (0.88, 0.94) (-6.18, 6.11) (6.15, 6.22) 

VAM Mean -0.48 0.48 0.01 0.01 

 95% CI -0.50, -0.46) (0.46, 0.50) 9-0.02, 0.01) (-0.01, 0.02) 

Gain Mean -0.00 0.01 6.12 -6.06 

 95% CI (-0.03, 0.02) (-0.03,0.02) (6.08, 6.15) (-6.10, -6.03) 

 

For Panel B, the students also regress. Here however those chosen 
to be in school because of their high test scores are likely to regress 
downward. An extreme example is if all students performing above the 
median were assigned to School X and all below the median were as-
signed to School Y. If the students are re-tested at the end of the year, in 
terms of percentage in the top half, School X cannot improve so can only 
appear less effective than School Y. Another example is the Sports Illus-
trated jinx (https: //en.wikipedia.org/wiki/Sports_Illustrated_cover_j 
inx). This is a US magazine that usually puts a photo of an athlete who 
has recently performed well on its cover. The "jinx" is that, after being on 
its cover, the athletes tend to perform less well than they did before being 
on the cover. This is a simple demonstration of regression towards the 
mean. The main statistical concepts for the results in Table 1 have been 
around for over one hundred years. An obvious question is: Why some of 
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these procedures have been used for high stakes decisions when these 
biases are known? I do not have an answer, obvious or otherwise. 

It is important to stress that this paper has not shown nor is the au-
thor arguing for either the VAM or gain score models to be used. While 
the gain score model does perform better for the simulated data in Panel 
A, it requires other assumptions. Further, in practice the way that the 
data arise will be much more complex than depicted in either Panel. 
While the data models used will always be just approximations, it is im-
portant for those analysing such data to develop more thorough approx-
imations of the data models based on knowledge of their particular con-
text. The analysts should then conduct simulations of different statistical 
models, like done here, to decide if these statistical models produce valid, 
reliable, and fair estimates (Wright, 2017). 

In relation to education policy, it is important to improve school 
effectiveness for all schools including those serving groups that his-
torically perform poorly. There are many initiatives for this. Some in-
volve moving principals and teachers who have received high VAM 
scores from schools that serve predominately historically high per-
forming groups to schools with low VAM scores that serve predomi-
nately historically low performing groups. The difficulty is that if 
school allocation for students is like that in Panel A, then it may be 
that the effectiveness scores of these principals and teachers are too 
high (so they may not be as effective as thought) and the locations 
that they are being assigned to may be more effective than thought. 

For any education policy to be useful it is important that it is 
based on accurate (valid, reliable, and fair) estimates. There are many 
controversial issues about using student test scores to evaluate 
schools. This paper is not addressing whether, in principle, test scores 
should be used. There are arguments for and against this. This paper 
addresses one aspect of the accuracy of a common statistical method 
used and shows that it is biased in systematic ways. 
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R Code for the simulations 

The function used to run the simulation is below. It allows the 
user to choose the number of replications, the number of schools and 
students, which of the two graphs in Figure 1 to use, the probability 
that students are assigned to their group's school, and the name of a 
data file to create. Readers are encouraged to adapt the code for their 
own needs and contact the author with any questions or comments. 

makedata <- func-
tion(reps=1000,nschool=100,nstud=10000, 
dag=1,ratio=.8,name="sim",writeit=FALSE){ 

effvals matrix(nrow=reps,ncol = 2*3)  
for (x in l:reps){ 

StudGr rbinom(nstud,l,.5) 

achieve <- rnorm(nstud,-2+StudGr*4,sd=20) 

prior <- achieve + rnorm(nstud,sd=20) 

PreGr as.numeric(prior > median(prior))  
school <- vector(length=nstud) 

SchGr rep(0:1,each=nschoo1/2)  
ifelse(dag==1, 

StSchGr rbinom(nstud,l,ratio*StudGr+(l-ratio)*(1-StudGr)), 

StSchGr rbinom(nstud,l,ratio*PreGr+(l-ratio)*(1-PreGr))) 

school [StSchGr == 0] <-  

sample(1:(nschoo1/2),sum(StSchGr==0),replace=TRUE) 

school [StSchGr == 1] <-  

sample((nschool/2 + 1):nschool,sum(StSchGr==1),replace=TRUE) 

seff rnorm(nschool,sd=5) 

SchData cbind(1:nschool,seff,SchGr) 

colnames(SchData) c("school","TrueVA","SchGr") 

StudData cbind(StudGr,achieve,prior,school,StSchGr) 

SimlData merge(StudData,SchData,by="school",all.x=TRUE) 

SimlData$post SimlData$achieve + rnorm(nstud,sd=20) + 
SimlData$TrueVA 
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AvePrex aggregate(Sim1Data$prior,by=list(Sim1Data$school),mean) 

colnames(AvePrex) c("school","AvePre") 

Siml merge(Sim1Data,AvePrex,by="school",all.x=TRUE) 

ml unlist(ranef(lmer(post-prior+(lIschool),data=Sim1))) 

effvals[x,1:2] tapply(ml,SchGr,mean) 

m2 <- unlist(ranef(lmer(post - prior - 0 +  
(lIschool),data=Sim1))) 

effvals[x,3:4] tapply(m2,SchGr,mean) 

m3 <- unlist(ranef(lmer(post - 0 +  
(lIschool),data=Sim1))) 

effvals[x,5:6] tapply(m3,SchGr,mean) 

} 

if(writeit) write.csv(effvals,paste0(name,".csv")) 

return(effvals)} 

The following code runs the two simulations. 

set.seed(815) #no meaning for these seeds 

effvalsl <- makedata(writeit=TRUE, 

name="priornotinfluenceallocation",reps=2000) 

set.seed(825) 

effvals2 <- makedata(writeit=TRUE, 

name="priorinfluenceallocation",dag=2,reps=2000) 




